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A B S T R A C T   

Considering the global need for fossil fuels and its limited resources, maximum production from oil reservoirs is 
important. Acid treatment is a common method to stimulate oil reservoirs, but acid and oil interaction may form 
undesirable asphaltic sludge, and the prediction of this phenomenon by using machine learning models can be 
useful for field application. In this study, multi-layer perceptron (MLP), extreme gradient boosting (XGBoost), 
random forest (RF), and categorical boosting (CatBoost) as four machine learning models were employed to 
estimate the weight of asphaltic sludge formed. To this end, a data set containing 199 experimental data for 
seven different oil samples including a wide range of SARA fractions was used. The input parameters of the 
models included oil properties, acid properties, and the content of protective additives. The statistical analysis 
indicated that the MLP model has the highest accuracy with the coefficient of determination (R2) of 0.9517. In 
addition, the impact analysis of the input variables showed that the ferric ion concentration has the highest 
impact on asphaltic sludge formation with a relevance factor of 0.2755. Finally, using the leverage method, only 
4 outlier data points were identified, which proved the validity of the model.   

1. Introduction 

In recent years, despite the increased attention to renewable energy, 
there is still demand on a global scale for fossil fuels. Considering the 
limited resources of fossil fuels and the high cost of drilling, it is essential 
that each production well reaches its maximum possible productivity. 
The acid stimulation process is the primary and regular way for well 
treatment, which aims to improve the fluid flow in the near wellbore 
region. Although, in some cases, it can cause new formation damages, 
which impedes the flow and thus reduces production. Acid-oil emulsion 
and sludge formation, aqueous phase trapping, clay swelling and 
dispersion, unfavorable wettability alteration, non-breaking gel-acid 
plugging, water and gas coning, insoluble precipitates raised from acid- 
rock side reactions, fines liberation and immigration are some of the 
various formation damages create during acid injection into the for
mation [1]. Among these, the formation and precipitation of asphaltic 
sludge has always been of interest [2]. Generally speaking, acid Sludge is 
an emulsion with a high viscosity, stabilized by organic particles rich in 
asphaltene [1]. Asphaltic sludge formation may have negative effects on 
near-wellbore permeability by blocking various pore spaces, altering 
rock wettability, and improving the stability of the emulsions [3]. Fig. 1 

shows the sludge formed on a steel screen due to the incompatibility 
between acid and crude oil. 

The formation of sludge is a complicated phenomenon, and its 
mechanism is not well known. It is affected by a wide range of param
eters, including the type and strength of the acid [4], temperature [5], 
additives [6,7], iron concentration especially ferric [8], exposure time 
[9], mixing rate and acid mixture ratio (AMR) [1], and characteristics of 
crude oil [10]. 

On the other hand, using protective additives such as anti-sludge, 
anti-emulsion, and ferric ion reducer is the common method to pre
vent sludge formation [11]. The presence of suitable anti-sludge causes 
the formation of smaller size sludge, which may not be harmful to the oil 
reservoir’s pores [1]. Also, when the acid and oil are emulsified in each 
other, more exposure time and surface area between the drops of acid 
and crude oil results in a significant amount of sludge and subsequent 
plugging of the pores, which is why anti-emulsion is utilized [12]. In 
addition, adding iron ion reducer causes the ferric ion to change to 
ferrous, subsequently decreasing the risk of sludging [6]. 

In order to prevent the formation damage and its costly consequence, 
it is essential to estimate the probable sludge formed before acidizing. 
Laboratory study as the compatibility test is a regular procedure for 
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checking the sludge formation tendency of crude oils. However, exper
imental testing is costly and time-consuming, and in some cases, the 
crude oil of the reservoir is not available, such as a newly drilled well 
that has not produced yet. Hence, the modeling and fast prediction of 
this phenomenon will be helpful. 

Machine learning and data mining methods have been used in 
various petroleum engineering fields recently as reliable alternatives to 
expensive experimental tests as a result of advancements in computer 
science. In recent years, Wang et al. used machine learning models for 
relative permeability upscaling [13], Hui et al. used machine learning 
models to identify controlling factors of unconventional shale produc
tivity [14], and also Kang et al. implemented deep learning models for 
prediction of drilling fluid lost-circulation zone [15]. Among these, some 
intelligent approaches have been developed within the field of forma
tion damage. Kalam et al. [16] reported one of the first uses of the 
machine learning method to evaluate the formation damage caused by 
the invasion of drilling and completion fluids and additives. Their sug
gested artificial neural network (ANN) has been successful in predicting 
relative permeability and wettability and curves. Zuluaga et al. [17] 
have used fuzzy logic (FL) and artificial neural networks (ANNs) to es
timate the effect of particle invasion on permeability decrease in un
consolidated rocks. Among implemented models, the ANN showed the 
best performance in forecasting permeability decrease utilizing flow
rate, initial porosity, particle concentration, and initial permeability. 
Rezaian et al. [18] have implemented ANNs in the formation caused by 
asphaltene deposition. The proposed ANN model predicted permeability 
reduction using initial permeability, asphaltene concentration, injection 
time, and velocity, the suggested model had an average absolute percent 
relative error of 8.3 %. Foroutan and Moghadasi [19] have developed an 
ANN which predicted the relative permeability while mineral precipi
tation. This model was able to predict mineral precipitation with an 
average error of about 5 %. Kamari et al. [20] have developed the 
coupled simulated annealing-least squares support vector machine 
(CSA-LSSVM), which predicted barium sulfate deposition at different 
NaCl concentrations and temperatures. The model had an average ab
solute relative deviation (AARD) of 0.0002 %. Pourakaberian et al. [21] 
have developed an ANN model to predict sludge mass and volume using 
a data set including 120 compatibility test data, ignoring the effect of 
protective additives. For all data, the correlation coefficient of the 

developed model was 0.9458. This study’s main aim was to statistically 
analysis the results of the experimental tests. In a recent study, Larestani 
et al. [22] attempted to estimate the formation damage induced by 
mineral scaling. The best model developed in this research was gradient 
boosting decision tree (GBDT), with an average absolute percent relative 
error of 0.1465 %. The significance of formation damage is undeniable 
in the oil and gas industry, as it directly influences the well productivity 
and ultimate recovery of reservoir. Formation damage control is critical 
for preserving the reservoir rock permeability to ensure stable produc
tion and cost reduction over the life of reservoirs. Machine learning 
models have shown their effectiveness in the application of controlling 
formation damage. 

To the best of the authors knowledge, there has been an absence of a 
comprehensive model that involves the properties of crude oil, acid, and 
preventative additives in order to predict the asphaltic sludge formation. 
Furthermore, whereas the literature has concentrated on the formation 
damage caused by asphaltene deposition, the issue of the formation 
damage induced by asphaltic sludge has been less attended. The previ
ous developed ANN model has not been taken into account the presence 
of preventative additives [21]. The inclusion of acid additives, together 
with more extensive dataset including various oil samples, and the 
comparative implementation of various machine learning models, can 
lead to the construction of an adequate predictive model for asphaltic 
sludge formation. 

In the present study, machine learning models are developed to es
timate the amount of asphaltic sludge formation, which is an unfavor
able factor in the stimulation of oil reservoirs. These models can be 
useful and efficient since checking acid and crude oil compatibility 
experimentally is not always feasible due to operational or economic 
limitations. On the other hand, this precipitation phenomena is complex 
and the accurate estimation can be achieved through the machine 
learning models. In addition, the published experimental data with 
similar procedure is very limited and therefore, this objective has not 
been achieved yet. In this study, we used 199 published experimental 
data with known and similar procedure to model asphaltic sludge pre
cipitation. The proposed model was well optimized and the importance 
of the independent parameters, notably operational additives, were 
founded. For this purpose, four intelligent models, namely multi-layer 
perceptron (MLP) neural network, extreme gradient boosting 
(XGBoost), random forest (RF), and categorical boosting (CatBoost) are 
used to estimate asphaltic sludge. To develop models, a data set con
sisting of crude oil properties, acid properties, the content of protective 
additives, and the formed sludge (g sludge/g oil) is assembled from the 
experimental tests. After assembling the data set, the data is divided into 
two parts, training and testing, and the models are trained with the 
training data and evaluated with the testing data. In order to accurately 
evaluate the models, statistical and graphical error analyses are per
formed, and the leverage method is used to prove the validity and 
applicability range of the model. In addition, the impact of input pa
rameters on the formation of asphaltic sludge is evaluated and the most 
effective parameter is determined. 

2. Asphaltic sludge and data collection 

For reliable and successful modeling of a phenomenon, it is necessary 
to comprehend the fundamental mechanisms in order to interpret and 
select model inputs. For this purpose, in the first step, the mechanisms 
involved in the formation of asphaltic sludge and in the second step, the 
details of the collected data are described. 

2.1. Asphaltic sludge formation mechanism 

The shear force generated by the acid injection forms an acid-in-oil 
emulsion during the acid stimulation operation. With the formation of 
an acid-in-oil emulsion, the conditions are created for the formation of 
asphaltic sludge. In general, Fig. 2 depicts the sequence of mechanisms 

Fig. 1. The picture of the sludge formed on the steel screen.  
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that cause the formation of asphaltic sludge. At a first step, the oil 
molecules and the hydrogen ions in the acid react together [23] as 
shown in Fig. 3. Hence, asphaltene would accumulate at the interface 
between the acid and crude oil phases [24], and then, acid-base re
actions of the asphaltene molecules and their heteroatoms like S, N, and 
O would occur at the interface [7,25]. With regard to these interactions, 
asphaltenes can move from the crude oil to the interface and then 
accumulate there. As this happens, a protective layer forms around the 
acid drops, preventing them from contact [26]. After then, the layer that 
was formed at the interface will expand. As a result of this, the thickness 
of this layer of sludge rises, and it also gets more dense [7]. Therefore, it 
can be concluded that crude oil properties, acid properties, and pro
tective additives play the main role in controlling the formation of 
asphaltic sludge. 

2.2. Data collection 

In this research, a credible data set was collected from our experi
mental tests to implement the models, and some of these data have been 
published in the literature [1]. The accurate bottle tests were performed 

following the API Recommended Practice 42 [27] standard method with 
some modifications, which is reliable for the quantitative measurement 
of asphaltic sludge formation [1]. Hydrochloric acid was used in the 
experimental tests. Seven different crude oil samples were used with a 
wide range of SARA (Saturate, Aromatic, Resin, and Asphaltene) frac
tions to reliable the suggested model. Table 1 shows the chemical and 
physical properties of crude oil samples. The additives used in this study 
are shown in Table 2. The collected data set includes 199 data points. In 
the applied data set, each data point contains values for crude oil dy
namic viscosity, saturate to aromatic ratio (Sa/Ar), asphaltene to resin 
ratio (As/Re), acid concentration (wt.%), acid to mixture ratio (AMR), 
mass concentration of ferric ion (mg/l), anti-sludge agent (wt.%), 
anti-emulsion agent (wt.%), ferric ion reducing agent (wt.%), and sludge 
mass (g sludge/g oil). 

The statistical description of data is presented in Table 3. The first 
nine parameters were selected as the model’s inputs, and the last was 
selected as the model’s output. Before use, the data set was randomly 
divided into train and test data at 80 % and 20 %, respectively. 

Fig. 2. The sequence of processes that would cause the formation of asphaltic sludge.  

Fig. 3. Schematic illustration of a contact between hydronium ion and oil components.  
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3. Methodology 

Four famous and cutting-edge models, namely random forest, 
extreme gradient boosting, multi-layer perceptron, and categorical 
boosting were used to achieve the results. All four methods have been 
previously documented as providing satisfying performance in previous 

petroleum related studies. The models were developed according to the 
following methods: 

3.1. Random forest (RF) 

The random forest technique is a kind of ensemble learning method 

Table 1 
Properties and characteristics of the crude oil samples.  

Sample Specific gravity (@ 25 ◦C) Density (◦API) Viscosity (cp) 
(@ 25 ◦C) 

As/Re Sa/Ar SARA Analysis (wt. %) 

Sa Ar Re As 

A 0.9164 22.91 101.5 1.3226 1.1123 45.04 40.49 6.23 8.24 
B 0.8731 30.57 25.20 0.1821 2.5250 63.96 25.33 9.06 1.65 
C 0.8952 26.57 33.60 0.3773 1.2763 49.93 39.12 7.95 3.00 
D 0.8711 30.94 18.20 0.0353 2.4639 66.97 27.18 5.65 0.20 
E 0.9194 22.40 78.20 0.6846 1.1833 47.25 39.93 7.61 5.21 
F 0.9330 19.00 2960 1.9350 1.4314 45.09 31.50 7.70 14.9 
G 0.8903 27.40 80.30 0.8604 1.2721 48.75 38.32 6.95 5.98  

Table 2 
Chemical structure and type of additives used.  

Common name & chemical formula Type Structural formula 

Dodecyl benzene sulfonic acid 
(C18H30O3S) 

Anti-sludge 

Erythorbic acid (C6H8O6) Ferric 
reducing 

N-alkylated polyhydroxyetheramines 
(NRO2H2) 

Anti- 
emulsion 
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where each tree is trained parallel to generate an ensemble of Decision 
Trees. In random forest, the greedy strategy determines the significance 
of each tree at each step [28]. In addition, RF can evaluate the impor
tance of each input feature and conserve the most informative features 
[29]. The RF method includes a technique known as bagging or boot
strap aggregation to optimize the variable selection and variety of the 
trees. The model will determine how to divide the input data into 
multiple sub-datasets based on the population of the trees. Bagging, a 
form of random sampling technique, assigns one-third of the data for the 
training stage of a subtree development procedure, while the remains 
are referred to as out-of-bag (OOB) samples. Furthermore, when 
employing the random forest algorithm, the cross-validation approach is 

not required since multiple bagging during the training process avoids 
over-fitting [30], which are the advantages of using RF applied in this 
study. The random forest structure is shown in Fig. 4. 

Assume D to be the training data set with n observations, D = [(x1,

y1),(x2,y2),…,(xn,yn)], and if Dt denotes the training data set for the tree 
ht, then the predicted output related to the OOB data set of sample x can 
be defined as follows [31]: 

Hoob(x)= argmax
∑T

t=1
I(ht(x))= y (1) 

The error of the OOB data set is described as follows: 

εoob(x)=
1
|D|

∑

(x,y)ϵD

I
(
Hoob(x)∕= y

)
(2) 

The RF should operate randomly, and this feature is managed by the 
parameter K, which is formulated as K = log2 d [30]. 

3.2. Extreme gradient boosting (XGBoost) 

The XGBoost method is a subset of the gradient boosting decision 
tree (GBDT) group of tree-based models. Many data science issues are 
accurately solved using a parallel tree-boosting method supplied by 
XGBoost. XGBoost was developed to be highly effective and flexible. 
Tree-based ensemble approaches use a set of regression trees (CARTs) to 
determine the most optimal fit for a given set of training data, using a 
regularized objective function. As shown in Fig. 5, each CART has a root 
node together with internal and leaf nodes. Based on the binary decision 
approach, the root node, which contains all data, is classed as an internal 
node, while the leaf nodes indicate the final categories. Gradient 
boosting progressively generates a strong group from a set of basic 
CARTs. Moreover, the weight of each CART must be synced throughout 
the training procedure [32]. 

A group of n trees should be trained in accordance with the following 

Table 3 
The statistical analysis of the data used in this study.  

Parameter Minimum Maximum Average Standard 
deviation 

Viscosity of crude oil 
(cP) 

18.2 2960 548.912 1102.401 

Saturate to Aromatic 
ratio 

1.112 2.525 1.719 0.596 

Asphaltene to Resin 
ratio 

0.035 1.935 0.68 0.648 

Acid concentration (wt. 
%) 

10.5 32.5 18.077 5.073 

Acid to mixture ratio 
(cc/cc) 

0.16 0.84 0.484 0.121 

Ferric ion (mg/l) 0 3000 1587.204 1181.738 
Anti-sludge agent (wt. 

%) 
0 1 0.123 0.266 

Anti-emulsion agent 
(wt.%) 

0 1 0.137 0.272 

Ferric reducing agent 
(wt.%) 

0 0.5 0.064 0.168 

Sludge mass (g sludge/ 
g oil) 

0.002 0.177 0.055 0.043  

Fig. 4. Schematic illustration of the random forest method.  
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equation for a given data set in order to model y as the output: 

ŷ =
∑N

K=1
fk(Xi), fk ∈ f With f =

{
f (X)=ωq(x)

}
,
(
q : Rm → T,ω∈RT) (3) 

Also, n and m relate to instances and dimension features, respec
tively. Additionally, the sample is converted into a binary leaf index by 
the decision rule q(x). Regression tree space is denoted by f , ω denotes 
the leaf weight, fk is the kth independent tree, and T is the number of 
leaves. 

Using the following equation, the regularized objective function is 
decreased to determine the group of trees: 

L=
∑n

i
l
(

ŷi, yi
)
+
∑N

k
Ω(fk) With Ω(f )= γT +

1
2

λ‖ω‖
2 (4)  

where l represents the differentiable convex loss function, and Ω is the 
regularization term that reduces the complexity of the model and assists 
in preventing overfitting. γ indicates the minimal loss reduction needed 
to split a new leaf, while λ denotes the regulation coefficient. It is 
important to notice that the parameters γ and λ in these equations help 
to decrease model variance and overfitting [33]. 

The learning factor rate is applied to the newly added weights after 
each boosting stage in XGBoost. This reduces the risk of overfitting by 
limiting the impact of future new trees on existing trees [34]. 

3.3. Multi-layer perceptron (MLP) neural network 

In the 1980s, the MLP, the most well-known artificial neural network 
(ANN) with several layers, was introduced [35]. MLP is a powerful tool 

for solving complex nonlinear problems, it can process large amounts of 
input data without a problem, and it is possible to have the same amount 
of accuracy with a smaller sample size. MLP is a type of feedforward 
ANNs consisting of several layers. The input layer is the first layer that is 
relevant to the input data, the output layer is the last layer that corre
sponds to the output of the model, and the layers in the middle that 
process the data are hidden layers [36]. Each neuron in the hidden 
layers will connect to each neuron in the next and previous layers. The 
amount of each neuron multiplying in its corresponding weight in the 
previous layer is added together, and a bias factor is added to these 
values. The resultant value is then transmitted to an activation function 
[37]. To achieve an accurate and efficient ANN, it is necessary to opti
mize the number of hidden layers and their neurons [38]. Typically, the 
number of neurons is estimated by trial and error [39]. The MLP model’s 
efficiency depends on the optimization techniques used to train the 
model [40].In this study, the MLP model based on the Adam optimiza
tion technique [41] is developed. Fig. 6 shows a schematic of the MLP 
neural network developed in this study. 

3.4. Categorical boosting (CatBoost) 

CatBoost is a kind of the categorical gradient boosting technique, 
that uses binary decision trees as its primary predictor as shown in Fig. 7 
[42,43]. This method functions with minimal information loss on cate
gorical features. The most important notion for comprehending Cat
Boost’s approach is based on the differentiation between training and 
testing datasets [44]. In addition, the indicator function 1 is another 
important notion for understanding how CatBoost encodes the cate
gorical features, as seen below [44]: 

Indicator function 1k,t =

{
1, if k = t

0, otherwize (5) 

The aforementioned function is an important part of the formula 
used by CatBoost to convert the categorical data into quantitative 
values. Furthermore, the boosting mechanism that is used by the Cat
Boost technique takes use of categorical columns, and processing tech
niques are used in these columns. The most critical are target-based 
statistics and One-Hot-Max-Size (OHMS). The main phases of the Cat
Boost technique are creating a random subgroup of variable records, 
changing labels to quantitative values, and transforming feature to 

Fig. 5. Schematic illustration of the CART model (Level-wise tree growth).  

Fig. 6. Schematic illustration of the MLP model developed in this study.  
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numerical format [45]. To avoid over-fitting, the CatBoost algorithm 
performs random permutations to predict leaf values while choosing the 
tree construction, which provides a significant advantage. In this 
method, the predicted value is obtained as below [42]: 

T =H(xi)=
∑n

n=1
cn1{x∈Rn} (6)  

where, H denotes the DT function, xi represents the explanatory vari
able, and Rn defines the disjoint section related to the tree’s leaves. 

3.5. Performance evaluation of models 

3.5.1. Statistical evaluation of models 
To statistically evaluate the performance and dependability of the 

models, various statistical parameters, including coefficient of deter
mination (R2), mean absolute error (MAE), standard deviation (SD), and 
root mean square error (RMSE) are served as follows: 

R2 = 1 −

∑N

i=1

(
yi,exp − yi,pred

)2

∑N

i=1

(
yi,exp − yexp

)2
(7)  

MAE =
1
N

∑N

i=1

⃒
⃒yi,exp − yi,pred

⃒
⃒ (8)  

SD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1

(
yi,exp − yi,pred

yi,exp

)2
√
√
√
√ (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
yi,exp − yi,pred

)2

√
√
√
√ (10)  

3.5.2. Graphical evaluation of models 
Graphical error assessments are used to illustrate and compare the 

models’ results. Cross plots, error distribution graphs, and cumulative 
frequency graphs were used to visually evaluate the performance of the 
suggested models. An overview of these graphical techniques is pro
vided below: 

The cross plot for the target parameter shows the predicted value 
compared to the actual value. Increased data point concentration 
around the unit-slope line in such graphs indicates a model with more 
accuracy. Graph of error distribution illustrates the percent relative 
error versus independent variables. Finally, the cumulative frequency 
graph displays the absolute relative error versus the cumulative error 
frequency. 

3.6. Development of models 

In order to develop the models and prevent overfitting, the hyper
parameters were optimized using the KerasTuner method for the MLP 
model and the gridsearch method for the RF, XGBoost, and CatBoost 
models. Table 4 provides the optimum hyperparameter values for the 
models. 

4. Results and discussion 

In this study, four effective algorithms that have already obtained 
acceptable results for modeling, were employed to predict the amount of 
asphaltic sludge. After selecting the optimal hyperparameter values, the 
models were developed using training data, and then testing data was 
served to evaluate the models. Fig. 8 shows the process of data prepa
ration and model development to predict sludge formation. 

4.1. Basic data analysis 

In the current research, the Pearson correlation matrix of the vari
ables in the data set was determined for the purposes of basic data 
analysis. Fig. 9 illustrates the Pearson correlation matrix, which pro
vides insight into relationships between different variables. Each cell 
displays the Pearson coefficient between two variables. The Pearson 
coefficient, which ranges from − 1 to +1, is employed to measure the 
linear relationship between two attributes. A negative value indicates a 
negatively linear relationship between two attributes, whereas a posi
tive value indicates a positively linear relationship. A value of 0 in
dicates the absence of a linear relationship. 

At first glimpse, it appears that there is a significant positive rela
tionship between the parameters of acid concentration, AMR, and 

Fig. 7. Schematic illustration of the CatBoost model structure.  

Table 4 
The optimum values of hyperparameters for the models.  

Hyperparameter Search range Model   

RF XGBoost CatBoost MLP 

max_depth 5–50 17 6 – – 
max_leaf_nodes 10–140 70 – – – 
n_estimators 20–2500 152 – – – 
max_features ’Sqrt’, ’log2′, 1, 

2, 3 
1 – – – 

eta 0.01–0.5 – 0.1 – – 
subsample 0.1–1 – 0.3 – – 
colsample_bytree 0.01–1 – 0.94 – – 
iterations 20–2000 – – 1000 – 
Depth 2–20 – – 7 – 
l2_leaf_reg 2–20 – – 4 – 
learning_rate 0.01–1.5 – – 1.258 0.002 
Hidden layers 1–256 – – – [32*72] 
Epoches 100–500 – – – 400 
Batch size 2–32 – – – 8 
Activation 

function 
Sigmoid–ReLU – – – ReLU  
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especially ferric ion with asphaltic sludge. Furthermore, it is noteworthy 
to mention that three additives, namely anti-sludge, anti-emulsion, and 
ferric reducing, exhibit a negative relationship with asphaltic sludge, 
aligning with expectations. With regard to the relationship between 
input features, a strong relationship is seen between viscosity and 
asphaltene-to-resin ratio. It is important to point out that experimental 
results have shown that the viscosity of oil samples increases with 
increasing asphaltene concentration under constant temperature con
ditions [46]. 

4.2. Statistical evaluation of the developed models 

Various statistical parameters, including R2, MAE, SD, and RMSE, 
were used to evaluate the efficiency of the models. The calculated values 
are shown in Table 5. As seen in the table, the MLP model has provided 
the most accurate prediction, with an RMSE of 0.0115. XGBoost, RF, and 
CatBoost models have predicted with RMSE values of 0.0121, 0.0160, 
and 0.0132 respectively. The high accuracy of a model for prediction can 
sometimes be a result of overtraining, which is another critical issue that 
should be considered. In order to prevent this, the outcomes of training 
and test results will be compared. If there is a significant gap between 
the metrics of the training and test results, the model can be overfitted. 
According to Table 5, there is no significant gap between the metrics of 
the training and test results; therefore, the models were not overfitted. 

4.3. Graphical evaluation of developed models 

Several graphical error analyses were conducted to demonstrate the 
reliability of the developed methods. The cross plots for the developed 
models are shown in Fig. 10. The greater concentration of data close to 
the unit-slope line shows that predicted values are closer to the actual 
ones, and the model is more reliable, consequently. The superior per
formance of the developed MLP model is evident compared to other 
applied models. 

The error distribution graph for the proposed models is shown in 
Fig. 11. This graph illustrates experimental data versus relative error. 
The forecasted data error decreases as the points condense and place 
close to the zero line. As illustrated in Fig. 11, the points in the MLP 
model are closer to the zero line, which shows better accuracy and a 
lower relative error than the other models. 

In addition, Fig. 12 shows the cumulative frequency graph, which 
shows the cumulative frequency of all data versus the absolute relative 
errors. Higher curvature indicates a model with better accuracy. This 
indicates that a model has more predicted data with a lower absolute 
relative error compared to other models. Based on Fig. 12, it can be 
concluded that the MLP model is more accurate than other models. 

4.4. Trend analysis 

Trend analysis was performed to assess the validity of the MLP model 
to predict asphaltic sludge formation. Hence, the experimental data of 
asphaltic sludge for two new distinct crude oil samples was obtained at 
different AMR values, and they were compared by the values predicted 
by MLP model. The characteristics of these crude oils are outlined in 
Table 6. As illustrated in Fig. 13, there is a noticeable rise in the asphaltic 
sludge of oil sample H, when the AMR increases. On the other hand, for 
oil sample I, the weight of asphaltic sludge has increased slightly. As can 
be seen, The MLP model has predicted the trend for both oil samples 
with reasonable accuracy. 

4.5. Analyzing the quality of experimental data and the model’s 
applicability range 

The leverage approach was applied for the MLP model (as the 
optimal model) to identify suspicious data as well as the model’s 
application range. The Leverage approach, with a clear visual 

Fig. 8. The process of preparing data and developing models to predict 
sludge formation. 
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representation in William’s plot, is one of the crucial methods for 
identifying outliers [47–49]. Fig. 14 shows William’s plot for the pro
posed MLP model. Differences between the model’s predictions and 
experimental data are represented by the standardized residual and the 
hat matrix, which is described as follows [50]: 

H =X
(
XT X

)− 1XT (11)  

H∗ =
3(n + 1)

m
(12) 

In this equation, XT denotes the transpose of the matrix X. Addi
tionally, H∗ is determined as the value for the Leverage limit, where the 
parameters m and n indicate the total amount of data in the data set and 
the number of input parameters, respectively. If the majority of the data 
points fall between the boundaries − 3 ≤ R ≤ 3 and 0 ≤ H ≤ H∗, the 
developed model is regarded as reliable, and its evaluations are done 
within the applicability range. 

As seen in Fig. 14, most data fall between − 3 ≤ R ≤ 3 and 0 ≤ H ≤

0.1507, and just four data points were identified as suspicious. Based on 
these findings, it can be concluded that the experimental data are of 
great quality and the MLP model is reliable. 

4.6. Impact analysis of input variables 

The impact analysis of the parameter is used to determine the in
fluence of input parameter on the output of model. This analysis is 
conducted using the following relevancy factor [51]: 

r(Inpk, out)=

∑n

i=1

(
Inpk,i − Inpavg,k

)(
Outi − Outavg

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Inpk,i − Inpavg,k

)2
−
∑n

i=1

(
Outi − Outavg

)2
√ (13) 

Hence, Outi means the ith value of the predicted output, while Outavg 

defines the average of the output data. Inpavg,k and Inpk,i denote the 
average value and the ith value of the kth input, respectively. This factor, 
which ranges from − 1 to 1, shows the impact of inputs data on the 
model’s output in three manners as follows [52]:  

1 If the relevancy factor is less than 0, by increasing the input variable, 
the value of the output variable decreases.  

2 If the relevancy factor is equal to 0, it can be concluded that there is 
no relation between the input variable and the output variable, or the 
relation is not monotonic.  

3 If the relevancy factor is more than 0, the input variable has an 
increasing impact on the output variable. 

Fig. 15 indicates the relevance factor values for the input variables of 
the MLP model. This chart shows that ferric ion, acid concentration, and 
acid to mixture ratio (AMR) have incremental impacts on sludge for
mation. Contrarily, ferric ion reducing agent, anti-emulsion agent, anti- 
sludge agent, asphaltene to resin ratio, viscosity of crude oil, and satu
rate to aromatic ratio have diminishing impacts on this. Among the 
parameters with the highest relevancy factor, ferric ion has the highest 
positive relevancy factor with a relevancy factor of 0.2755, which means 
that with the increase of ferric ion, the amount of sludge also increases; 
the observed impact can be related to the significant influence of ferric 
ions and their complexes on the acid-oil interface, leading to increased 
emulsion stability and ultimately increasing asphaltic sludge formation 
[53]. On the other hand, anti-emulsion agent has the highest negative 
relevancy factor with a relevancy factor of − 0.2735, which means that 

Fig. 9. The Pearson correlation matrix of the variables in the data set.  

Table 5 
Calculated statistical parameters for the suggested models.  

Model  R2 MAE SD RMSE No. of data 

MLP Train 0.9690 0.0037 0.0424 0.0069 159 
Test 0.9517 0.0073 0.0485 0.0115 40 
Total 0.9645 0.0045 0.0436 0.0081 199 

RF Train 0.9477 0.0067 0.0379 0.0096 159 
Test 0.8947 0.0116 0.0428 0.0160 40 
Total 0.9338 0.0077 0.0388 0.0112 199 

XGBoost Train 0.9304 0.0077 0.0386 0.0111 159 
Test 0.9395 0.0096 0.0446 0.0121 40 
Total 0.9328 0.0081 0.0398 0.0113 199  
Train 0.9342 0.0078 0.0399 0.0107 159 

CatBoost Test 0.9284 0.0103 0.0431 0.0132 40  
Total 0.9327 0.0083 0.0404 0.0113 199  
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with the increase of anti-emulsion agent, the amount of sludge de
creases. In fact, the sludge is a viscous emulsion stabilized by organic 
components; therefore, utilizing of the anti-emulsion additive inhibits 
the stability of the acid-oil emulsion, which decreases the formation of 
asphaltic sludge [1]. 

In terms of the impact of additives, anti-emulsion agent, ferric ion 
reducing agent, and anti-sludge agent are placed with the relevance 
factor of − 0.2735, − 0.2032, and − 0.1899, respectively. This finding 
proved the importance of ferric ion reducing agent to suppress sludging 
besides other regular protective additives. Parameters related to the 
crude oil properties, such as viscosity, asphaltene to resin ratio, and 
saturate to aromatic ratio, are placed with the relevance factor of 
− 0.1681, − 0.0796, and − 0.0131, respectively; this indicates that the 
viscosity of crude oil has a more impact on the formation of asphaltic 
sludge than other crude oil properties. Finally, from the view of acid 
properties, ferric ion, acid concentration, and acid to mixture ratio are 
placed with the relevance factor of 0.2755, 0.1181, and 0.0912, 
respectively. 

As a result, among four superior machine learning models, the MLP 
as the best model provides an accurate prediction of asphaltic sludge 
formation; this helps the sludge formation prediction prior to acidizing 
operations in situations where compatibility testing is not possible or 
economical. Also, the impact of various parameters, which is important 
due to the complexity of the relationships governed by this phenome
non, was clarified using relevancy factor. Therefore, the values of the 
effective parameters can be more accurately designed before the acid 
stimulation operation to control the formation of asphaltic sludge more 
effectively. 

Although the current study offers findings and insights about the use 
of machine learning models for asphaltic sludge modeling, it is crucial to 

recognize the inherent limitations of this research. One significant lim
itation arises from the fact that machine learning models are often 
constructed using a particular dataset, which might potentially restrict 
their effectiveness when applied to other domains. Consequently, these 
models typically need retraining in order to be applicable to new do
mains. Another limitation of this study is that although the MLP model 
exhibited superior performance, it is commonly perceived as a black box 
model owing to certain attributes that creates challenges in compre
hending the rationales behind a model’s decision-making process. 
Therefore, in situations where comprehending the decision-making 
process is essential, a dearth of transparency may undermine trust in 
the predictions made by the model. 

5. Summary and conclusions 

It is essential that every producing well achieve its maximum feasible 
production due to the limited resources of fossil fuels and the high cost of 
drilling. Therefore, in order to prevent the formation of asphalt sludge, it 
is necessary to predict this phenomenon for maximum production from 
oil reservoirs. For this purpose, in the present study, a data set con
taining 199 compatibility experimental data of asphaltic sludge forma
tion for seven different crude oil samples covering a wide range of SARA 
analysis values was collected. Nine input parameters related to crude oil 
properties, acid properties, and the amount of additives, were used to 
predict the formed sludge mass. To this end, four machine learning 
models, namely multi-layer perceptron (MLP) neural network, random 
forest (RF), extreme gradient boosting (XGBoost), and Categorical 
boosting (CatBoost) were developed, and the following results were 
obtained: 
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Fig. 10. Cross plots of the developed models.  
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1. Among the proposed models, the MLP model showed the best per
formance with RMSE value of 0.0115. The RMSE values for XGBoost, 
CatBoost, and RF models were obtained as 0.0121, 0.0132, and 
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Fig. 11. Error distribution graphs of the developed models.  

Fig. 12. The cumulative frequency plot of the proposed models.  

Table 6 
Properties and characteristics of the crude oil samples served for validation analysis.  

Sample Density (◦API) Viscosity (cp) 
(@ 25 ◦C) 

As/Re Sa/Ar SARA Analysis (wt. %) 

Sa Ar Re As 

H 20.30 140 1.3076 1.2837 47.5 37 6.5 8.5 
I 27.86 56 1.0714 1.2368 47 38 7 7.5  
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Fig. 13. Predictions of MLP model with experimental asphaltic sludge data for 
two different oil samples. 
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0.0160, respectively; this superiority can be attributed to the MLP 
model’s capacity to interpret complex nonlinear relationships and 
intricate data patterns.  

2. The MLP model and the data were proven to be valid and reliable 
using the leverage method, which indicated that just 4 data points 
were suspected.  

3. The impact analysis of the input variables showed that the impact of 
the input variables was as follows: Ferric ion > Anti-emulsion agent 
> Ferric ion reducing agent > Anti-sludge agent > Viscosity > Acid 
concentration > Acid to mixture ratio > Asphaltene to Resin ratio >
Saturate to Aromatic ratio. Except for ferric ion, acid concentration, 
and acid to mixture ratio, the other factors have a decreasing impact 
on the formation of asphaltic sludge.  

4. Anti-emulsion agent with a relevance factor of − 0.2735 was the most 
effective additive, followed by ferric ion reducing agent and anti- 
sludge agent with relevance factors of − 0.2032 and − 0.1899, 
respectively.  

5. The results obtained from the trend analysis of the MLP model in two 
distinct oil samples, including different AMR ranges, demonstrated 
reliable performance for this model.  

6. In some operational cases, it is not possible or economical to do 
compatibility tests before the acid stimulation operation, so it is 
necessary to estimate the formation of asphaltic sludge before it to 
minimize formation damage consequences. To achieve this, an 

accurate estimation can be made using the proposed machine 
learning model. 
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Muñoz SG, Laird CD, Realff MJ, editors. Computer aided chemical engineering. 
Elsevier; 2019. p. 113–8. 

[35] Wasserman PD, Schwartz T. Neural networks. II. What are they and why is 
everybody so interested in them now? IEEE expert 1988;3(1):10–5. 

[36] Lashkarbolooki M, Hezave AZ, Ayatollahi S. Artificial neural network as an 
applicable tool to predict the binary heat capacity of mixtures containing ionic 
liquids. Fluid Phase Equil 2012;324:102–7. 

[37] Mohammadi M-R, Hemmati-Sarapardeh A, Schaffie M, Husein MM, Ranjbar M. 
Application of cascade forward neural network and group method of data handling 
to modeling crude oil pyrolysis during thermal enhanced oil recovery. J Petrol Sci 
Eng 2021;205:108836. 

[38] Khamehchi E, Mahdiani MR, Amooie MA, Hemmati-Sarapardeh A. Modeling 
viscosity of light and intermediate dead oil systems using advanced computational 
frameworks and artificial neural networks. J Petrol Sci Eng 2020;193:107388. 

[39] Sarapardeh AH, Larestani A, Menad NA, Hajirezaie S. Applications of artificial 
intelligence techniques in the petroleum industry. Gulf Professional Publishing; 
2020. 

[40] Mohammadi M-R, Hadavimoghaddam F, Pourmahdi M, Atashrouz S, Munir MT, 
Hemmati-Sarapardeh A, et al. Modeling hydrogen solubility in hydrocarbons using 
extreme gradient boosting and equations of state. Sci Rep 2021;11(1):17911. 

[41] Kingma DP, Adam Ba J. A Method For Stochastic Optimization. In: International 
Conference on Learning Representations; 2015. p. 1–13. 

[42] Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased 
boosting with categorical features. Adv Neural Inf Process Syst 2018:31. 

[43] Lv Q, Zheng R, Guo X, Larestani A, Hadavimoghaddam F, Riazi M, et al. Modelling 
minimum miscibility pressure of CO2-crude oil systems using deep learning, tree- 
based, and thermodynamic models: application to CO2 sequestration and enhanced 
oil recovery. Separ Purif Technol 2023;310:123086. 

[44] Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. 
Journal of Big Data 2020;7(1):94. 

[45] Abdi J, Hadavimoghaddam F, Hadipoor M, Hemmati-Sarapardeh A. Modeling of 
CO2 adsorption capacity by porous metal organic frameworks using advanced 
decision tree-based models. Sci Rep 2021;11(1):24468. 

[46] Ghanavati M, Shojaei M-J, S AAR. Effects of asphaltene content and temperature 
on viscosity of Iranian Heavy crude oil: experimental and modeling study. Energy 
Fuels 2013;27(12):7217–32. 

[47] Goodall CR. 13 Computation using the QR decomposition. 1993. 
[48] Gramatica P. Principles of QSAR models validation: internal and external. QSAR 

Comb Sci 2007;26(5):694–701. 
[49] Leroy A, Rousseeuw P. Robust regression and outlier detection. 1987. rrod. 
[50] Hemmati-Sarapardeh A, Hatami S, Taghvaei H, Naseri A, Band SS, Chau K-w. 

Designing a committee of machines for modeling viscosity of water-based 
nanofluids. Engineering Applications of Computational Fluid Mechanics 2021;15 
(1):1967–87. 

[51] Hosseinzadeh M, Hemmati-Sarapardeh A. Toward a predictive model for 
estimating viscosity of ternary mixtures containing ionic liquids. J Mol Liq 2014; 
200:340–8. 

[52] Nakhaei-Kohani R, Taslimi-Renani E, Hadavimoghaddam F, Mohammadi M-R, 
Hemmati-Sarapardeh A. Modeling solubility of CO2–N2 gas mixtures in aqueous 
electrolyte systems using artificial intelligence techniques and equations of state. 
Sci Rep 2022;12(1):3625. 

[53] Ganeeva YM, Yusupova TN, Barskaya EE, Valiullova AK, Okhotnikova ES, 
Morozov VI, et al. The composition of acid/oil interface in acid oil emulsions. 
Petrol Sci 2020;17(5):1345–55. 

S. Shakouri and M. Mohammadzadeh-Shirazi                                                                                                                                                                                            

http://refhub.elsevier.com/S0360-5442(23)02827-X/sref13
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref13
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref14
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref14
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref14
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref15
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref15
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref16
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref16
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref16
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref17
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref17
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref17
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref18
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref18
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref18
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref19
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref19
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref19
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref20
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref20
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref20
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref21
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref21
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref21
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref22
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref22
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref22
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref22
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref23
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref24
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref24
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref24
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref25
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref25
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref26
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref26
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref26
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref27
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref27
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref28
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref28
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref28
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref29
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref29
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref29
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref30
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref31
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref31
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref31
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref32
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref32
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref32
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref33
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref33
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref33
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref34
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref34
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref34
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref35
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref35
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref36
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref36
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref36
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref37
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref37
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref37
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref37
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref38
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref38
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref38
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref39
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref39
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref39
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref40
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref40
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref40
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref41
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref41
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref42
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref42
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref43
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref43
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref43
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref43
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref44
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref44
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref45
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref45
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref45
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref46
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref46
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref46
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref47
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref48
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref48
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref49
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref50
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref50
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref50
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref50
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref51
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref51
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref51
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref52
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref52
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref52
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref52
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref53
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref53
http://refhub.elsevier.com/S0360-5442(23)02827-X/sref53

	Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods
	1 Introduction
	2 Asphaltic sludge and data collection
	2.1 Asphaltic sludge formation mechanism
	2.2 Data collection

	3 Methodology
	3.1 Random forest (RF)
	3.2 Extreme gradient boosting (XGBoost)
	3.3 Multi-layer perceptron (MLP) neural network
	3.4 Categorical boosting (CatBoost)
	3.5 Performance evaluation of models
	3.5.1 Statistical evaluation of models
	3.5.2 Graphical evaluation of models

	3.6 Development of models

	4 Results and discussion
	4.1 Basic data analysis
	4.2 Statistical evaluation of the developed models
	4.3 Graphical evaluation of developed models
	4.4 Trend analysis
	4.5 Analyzing the quality of experimental data and the model’s applicability range
	4.6 Impact analysis of input variables

	5 Summary and conclusions
	Credit author statement
	Declaration of competing interest
	Data availability
	Abbreviations
	References


